Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Curr Rheumatol Rep ; 26(3): 89-95, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127092

RESUMO

PURPOSE OF REVIEW: Knee osteoarthritis is a debilitating chronic disease affecting nearly half of the world's population at some point in their lives. Treatment of pain and loss of function associated with this disease has been limited. In this review, we seek to explore how neural interventions with ultrasound guidance may be an emerging option for non-pharmacologic pain relief in patients with knee osteoarthritis. RECENT FINDINGS: Cryoneurolysis techniques have been demonstrated to provide pain relief out to 150 days post-treatment in knee osteoarthritis in select individuals. There have also been studies of cryoneurolysis pre-operatively to total knee replacement providing reduced pain, reduced opioid use post-operatively, and shorter hospital length of stay. Cooled radiofrequency ablation (CRFA) has been demonstrated to significantly reduce pain, improve functionality, and reduce pharmacologic needs in knee osteoarthritis out to 2 years. Both interventions appear to have increased accuracy with ultrasound, and CRFA appears to be associated with improved patient outcomes. The research demonstrates the efficacy of both cryoneurolysis and cooled radiofrequency ablation in the treatment of knee osteoarthritis. Ultrasound guidance in neurolysis provides an additional tool with real-time, high-accuracy nerve localization. These therapies should be considered for certain patients to assist in pain management in the non-operative and post-operative phase of knee osteoarthritis management. Further research is needed to further define the long-term effects and the long-term utility of the techniques in knee pain.


Assuntos
Osteoartrite do Joelho , Ablação por Radiofrequência , Humanos , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/cirurgia , Temperatura , Articulação do Joelho/inervação , Ablação por Radiofrequência/métodos , Dor , Resultado do Tratamento
2.
J Virol ; 96(5): e0197421, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35019721

RESUMO

The development of therapies to eliminate the latent HIV-1 reservoir is hampered by our incomplete understanding of the biomolecular mechanism governing HIV-1 latency. To further complicate matters, recent single-cell RNA sequencing (scRNA-seq) studies reported extensive heterogeneity between latently HIV-1-infected primary T cells, implying that latent HIV-1 infection can persist in greatly differing host cell environments. We show here that transcriptomic heterogeneity is also found between latently infected T cell lines, which allowed us to study the underlying mechanisms of intercell heterogeneity at high signal resolution. Latently infected T cells exhibited a dedifferentiated phenotype, characterized by the loss of T cell-specific markers and gene regulation profiles reminiscent of hematopoietic stem cells (HSC). These changes had functional consequences. As reported for stem cells, latently HIV-1-infected T cells efficiently forced lentiviral superinfections into a latent state and favored glycolysis. As a result, metabolic reprogramming or cell redifferentiation destabilized latent infection. Guided by these findings, data mining of single-cell RNA-seq data of latently HIV-1-infected primary T cells from patients revealed the presence of similar dedifferentiation motifs. More than 20% of the highly detectable genes that were differentially regulated in latently infected cells were associated with hematopoietic lineage development (e.g., HUWE1, IRF4, PRDM1, BATF3, TOX, ID2, IKZF3, and CDK6) or were hematopoietic markers (SRGN; hematopoietic proteoglycan core protein). The data add to evidence that the biomolecular phenotype of latently HIV-1-infected cells differs from that of normal T cells and strategies to address their differential phenotype need to be considered in the design of therapeutic cure interventions. IMPORTANCE HIV-1 persists in a latent reservoir in memory CD4 T cells for the lifetime of a patient. Understanding the biomolecular mechanisms used by the host cells to suppress viral expression will provide essential insights required to develop curative therapeutic interventions. Unfortunately, our current understanding of these control mechanisms is still limited. By studying gene expression profiles, we demonstrated that latently HIV-1-infected T cells have a dedifferentiated T cell phenotype. Software-based data integration allowed the identification of drug targets that would redifferentiate viral host cells and, by extension, destabilize latent HIV-1 infection events. The importance of the presented data lies within the clear demonstration that HIV-1 latency is a host cell phenomenon. As such, therapeutic strategies must first restore proper host cell functionality to accomplish efficient HIV-1 reactivation.


Assuntos
Linfócitos T CD4-Positivos , Desdiferenciação Celular , Infecções por HIV , HIV-1 , Latência Viral , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos
3.
Sci Rep ; 10(1): 15748, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978478

RESUMO

Tetraspanins are a family of proteins with an array of functions that are well studied in cancer biology, but their importance in immunology is underappreciated. Here we establish the tetraspanin CD151 as a unique marker of T-cell activation and, in extension, an indicator of elevated, systemic T-cell activity. Baseline CD151 expression found on a subset of T-cells was indicative of increased activation of the MAPK pathway. Following TCR/CD3 activation, CD151 expression was upregulated on the overall T-cell population, a quintessential feature of an activation marker. CD151+ T-cell frequencies in the spleen, an organ with increased immune activity, were twice as high as in paired peripheral blood samples. This CD151+ T-cell frequency increase was not paralleled by an increase of CD25 or CD38, demonstrating that CD151 expression is regulated independently of other T-cell activation markers. CD151+ T-cells were also more likely to express preformed granzyme B, suggesting that CD151+ T cells are pro-inflammatory. To this end, HIV-1 patients on antiretroviral therapy who are reported to exhibit chronically elevated levels of immune activity, had significantly higher CD4+CD151+ T-cell frequencies than healthy controls, raising the possibility that proinflammatory CD151+ T cells could contribute to the premature immunological aging phenotype observed in these patients.


Assuntos
Complexo CD3/metabolismo , Soropositividade para HIV/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Tetraspanina 24/metabolismo , Regulação para Cima , Adulto , Idoso , Estudos de Casos e Controles , Granzimas/metabolismo , Soronegatividade para HIV , Soropositividade para HIV/metabolismo , Humanos , Ativação Linfocitária , Sistema de Sinalização das MAP Quinases , Pessoa de Meia-Idade , Baço/imunologia , Linfócitos T/citologia
4.
J Immunol ; 199(9): 3336-3347, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28954890

RESUMO

The tetraspanin CD151 is a marker of aggressive cell proliferation and invasiveness for a variety of cancer types. Given reports of CD151 expression on T cells, we explored whether CD151 would mark T cells in a hyperactivated state. Consistent with the idea that CD151 could mark a phenotypically distinct T cell subset, it was not uniformly expressed on T cells. CD151 expression frequency was a function of the T cell lineage (CD8 > CD4) and a function of the memory differentiation state (naive T cells < central memory T cells < effector memory T cells < T effector memory RA+ cells). CD151 and CD57, a senescence marker, defined the same CD28- T cell populations. However, CD151 also marked a substantial CD28+ T cell population that was not marked by CD57. Kinome array analysis demonstrated that CD28+CD151+ T cells form a subpopulation with a distinct molecular baseline and activation phenotype. Network analysis of these data revealed that cell cycle control and cell death were the most altered process motifs in CD28+CD151+ T cells. We demonstrate that CD151 in T cells is not a passive marker, but actively changed the cell cycle control and cell death process motifs of T cells. Consistent with these data, long-term T cell culture experiments in the presence of only IL-2 demonstrated that independent of their CD28 expression status, CD151+ T cells, but not CD151- T cells, would exhibit an Ag-independent, hyperresponsive proliferation phenotype. Not unlike its reported function as a tumor aggressiveness marker, CD151 in humans thus marks and enables hyperproliferative T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Regulação da Expressão Gênica/imunologia , Tetraspanina 24/imunologia , Antígenos CD28/genética , Antígenos CD28/imunologia , Antígenos CD57/genética , Antígenos CD57/imunologia , Senescência Celular/genética , Senescência Celular/imunologia , Regulação da Expressão Gênica/genética , Humanos , Tetraspanina 24/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA